文章编号: 0258-7025(2010)10-2487-04

光纤环形腔激光陀螺中的闭锁效应

苏 觉 钱景仁

(中国科技大学电子工程与信息科学系光波实验室,安徽 合肥 230027)

摘要 通过理论分析,得到了掺铒光纤环形腔激光陀螺中存在后向反射时,陀螺的两束激光频差和陀螺转速动态 关系的解析表达式,并用矢量图明确表明了闭锁效应出现的条件。分析表明光纤激光陀螺的闭锁主要是由瑞利后 向散射引起的,这一散射虽然在红外波长甚弱,但在有源环形腔内会被显著加强,因此成为陀螺闭锁的主要原因。 实验证实了上述理论分析结果,在陀螺旋转速度小于10°/s时出现了闭锁。

关键词 激光器;掺铒光纤环形腔激光陀螺;闭锁效应;瑞利散射

中图分类号 V241.5⁺⁵⁸ 文献标识码 A doi: 10.3788/CJL20103710.2487

Lock-in Effect in Fiber Ring Laser Gyros

Su Jue Qian Jingren

(Lightwave Laboratory, Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027, China)

Abstract Taking account of the backscattering in a ring cavity, resonance behavior of two counter-propagating lasing beams is analyzed and the dynamic lasing frequencies as a function of rotation rates are obtained in a close form. The condition for occurring lock-in effect in the gyro is also obtained easily from the vector diagrams. It is noted that the Rayleigh backscattering is the main source to form the lock-in effect, although the scattering is weak in a fiber at infrared wavelength, which can be considerably enhanced in an active resonator. The above mentioned analytic close form of dynamic frequencies is confirmed by a fiber ring laser gyro experiment, and the gyro is locked-in when its rotation rate is less than 10° /s.

Key words lasers; Er-doped fiber ring laser gyro; lock-in effect; Rayleigh scattering

1 引 言

激光陀螺作为中高等精度惯性导航的理想器件 已得到广泛的研究^[1~3]。众所周知,激光陀螺中有 闭锁效应^[4],它使激光陀螺工作起始值附近(即转速 较小时),两个传输方向相反的激光频率相互锁定, 从而使陀螺不能正常工作。环形腔中以非均匀损耗 和瑞利(Rayleigh)散射为主的后向反射是造成激光 陀螺闭锁的主要原因。在分析闭锁效应成因时,传 统的方法是求微分方程的数值解^[4],可以计算得到 陀螺的具体工作曲线,并无一般解析表达式。

光纤环形腔激光陀螺也会产生闭锁效应。光纤 激光陀螺^[5]是综合了光纤陀螺与激光陀螺的优点, 利用光纤的固态性能和激光器的谐振特点,并在此 基础上发展出来的新型光学陀螺。具有动态范围 大、精度高、抗振动冲击性能好、寿命长等特点。它 借助掺铒光纤环形腔在顺(CW)、逆(CCW)时针两 个方向上产生激光,而两束激光频差的变化直接与 光纤环旋转的角速度成正比。要实用化必须克服环 形腔内有源增益区的空间烧孔现象,后者导致两方 向上光束的耦合,形成闭锁、多纵模等一系列的问题。为了克服空间烧孔,Y.B.Yeo等^[6]提出采用 锁模激光技术,在环形腔内形成脉冲,避免在增益区 出现驻波,但是也带来许多检测问题和克服脉冲功 率波动等问题。R.Kiyan等^[7,8]提出在环形腔内加 入非互易器件(如法拉第旋转体)来抑制空间烧孔并 保持激光的连续波状态,但每个传播方向上依然有 两个不同的特征模式,不利于陀螺工作。Qian Jingren等^[9]曾提出用方向相关起偏器来抑制空间

收稿日期: 2009-11-17; 收到修改稿日期: 2010-02-04

作者简介:苏 觉(1978-),男,博士,讲师,主要从事光纤技术方面的研究。E-mail: sjue@ustc.edu.cn

烧孔,但依然存在闭锁效应。

本文从理论上分析了有源光纤环形腔中存在后 向反射或散射时,传输方向相反又互相耦合的两束 激光的传输方程,得到了表征该陀螺工作的解析表 达式。由此可以确定环形腔陀螺的闭锁条件和光纤 激光陀螺出现闭锁的主要原因。在一个掺铒光纤环 形腔激光陀螺的实验中观察到闭锁效应。

2 理论分析

图 1 是有源光纤双向环形腔激光器的示意图, 环中只考虑一种偏振态模式在 CW 和 CCW 方向传 输。环中的增益补偿了环内的损耗,维持两方向上 幅度分别为 E_1 和 E_2 的稳定工作。图中 Z = 0 为 E_1 和 E_2 所在参考面。 E_1 从 Z = 0 出发到 Z = L 时,又 回到原处,CCW 的激光 E_2 则从 Z = 0处逆向行驶一 周到 Z = 0 处。

图 1 光纤环形腔示意图

Fig. 1 Schematic of fiber ring resonator

如果两束激光之间无耦合,CW 和 CCW 方向 上产生激光的条件为

$$\begin{cases} \exp\left[-j\left(\beta L - \phi/2\right)\right] - 1 = 0, \\ \exp\left[-j\left(\beta L + \phi/2\right)\right] - 1 = 0. \end{cases}$$
(1)

由(1)式可以确定两个方向上的一系列纵模,其 振荡频率满足

$$\beta_{\pm} L \pm \phi/2 = 2m\pi, \qquad (2)$$

式中+(-)分别对应于 CW(CCW)波。环形腔以 Ω 转速旋转时,由 Sagnac 效应引起的相移 $\phi = \frac{2\pi LD}{\lambda c}\Omega = \frac{2\pi D}{\lambda n} \frac{1}{f_{FSR}}\Omega$,其中 λ 为工作波长, L 为环形 腔的腔长, n 为光纤折射率, D 为光环路的直径, c 为 光速, $f_{FSR} = c/nL$ 为自由频谱宽度。 β_+ 和 β_- 分别为 光纤环形腔中 CW 方向和 CCW 方向光的相位常 数。由(2)式, 再利用相位常数和激光频率的关系, 可得到环形腔中 CW 方向和 CCW 方向上激光的频 率差 Δf 为

$$\Delta f = f_{\rm FSR} \, \frac{\phi}{2\pi},\tag{3}$$

式中 f_{FSR} 对确定的环形腔为常数。由(3)式可见 Δf 与 $\phi(\mathfrak{q} \Omega)$ 呈线性关系,不存在闭锁效应。

若环形腔内存在后向反射或散射,如图1所示,则两束激光在环内传输时将发生耦合,在Z = 0(或 Z = L)截面上两束光场 E_1 和 E_2 的传输方程为

$$\boldsymbol{E}_{1}\exp\left[-j\left(\beta L-\phi/2\right)\right]+S_{2}\boldsymbol{E}_{2}=\boldsymbol{E}_{1}, \quad (4)$$

 $E_2 \exp\left[-j\left(\beta L + \phi/2\right)\right] + S_1 E_1 = E_2.$ 式中 S₁ 和 S₂ 分别为 Z = 0 处两束光的后向反射或

散射系数。由(4)式可得:
$$\begin{vmatrix} \exp\left[-j\left(\beta L - \frac{\phi}{2}\right)\right] - 1 & S_2 \\ S_1 & \exp\left[-j\left(\beta L + \frac{\phi}{2}\right)\right] - 1 \end{vmatrix} = 0,$$
(5)

从而,

$$\beta_{\pm} L = 2m_{\pi} \pm \arcsin\left[\frac{\sqrt{\sin^2(\phi/2) - S_1 S_2}}{\sqrt{1 - S_1 S_2}}\right].$$
(6)

由(6)式就可得到环形腔中 CW 和 CCW 两个 方向上传输的同一个纵模的频差,即陀螺工作时输 出读数

$$\Delta f = \frac{f_{\text{FSR}}}{\pi} \arcsin\left[\frac{\sqrt{\sin^2\left(\phi/2\right) - S_1 S_2}}{\sqrt{1 - S_1 S_2}}\right].$$
 (7)

(7)式即为陀螺的工作方程,当 $S_1S_2 = a^2$ 为正 实数,且 $sin(\phi/2) \leq a$ 时, Δf 的实部为零,即出现闭 锁。只有当 $sin(\phi/2) > a$ 时闭锁才打破。图2表示了 (7)式在不同 a 值时的变化曲线。

Fig. 2 Operating curve of fiber ring laser gyro

下面用矢量图来研究陀螺中两束激光闭锁时的 矢量结构。闭锁时环内的激光频率只有一个且满足 $\beta L = 2m\pi$,此时(4)式可用图3表示。闭锁时必须要 相反方向传输的两束光相互锁定,由于 $\phi \ll 1$,因此 由图3(a)可知 S_2E_2 要比 E_1 超前 $\pi/2$,而由图3(b)

可知 S_1E_1 要比 E_2 滞后 $\pi/2$,即要求 S_1S_2 是正实数。 这就说明前面要求 $S_1S_2 = a^2$ 为正实数是两束光相 互锁定所必需的条件。

图 3 两束激光相互锁定时的矢量图

Fig. 3 Vector diagram for lock-in effect in the gyro

现在来研究两种情况:一种是由于光纤几何变 形、接头不完善等引起的反射;另一种是由于光纤材 料中微观的折射率不均匀而引起的散射。

先研究前一种情况,对两束光的反射 S1 和 S2 应是光纤环形腔沿线反射的总和,这里仅研究线上 一点的反射并不会影响其一般性。先假定在图1的 Z = l处有一小反射,在能量守恒的系统中,在Z = l处对两个方向的光场来讲,其反射系数可以表示为

$$S_1 = jAexp(-2j\beta l), \qquad (8)$$

$$S_2 = jA \exp[-2j\beta(L-l)].$$

由(8)式可知,由于 $\beta L \approx 2m\pi$, A 为实数, 所以 S_1S_2 乘积为负实数,这就说明了环形腔内光纤不完 善而造成的反射不会引起环形腔陀螺的闭锁。虽然 如此,但由(7)式可知,这种反射会造成频差读数的 误差,对于高精度的测量,尤其要注意这种反射的 影响。

再来看第二种情况。由于光纤材料中微观的折 射率不均匀而引起的瑞利散射,在光纤中是随机分 布的。在光场的作用下,每一个不均匀点可以等效 成一个电偶极子[10],向四周辐射光场,由于不均匀 点的尺度远小于光波长和光纤截面的尺寸,因此其 辐射场可用无限大空间场来近似[10],这一辐射场一 部分在光纤芯和包层交界面上全反射而被光纤俘获 成为 S₁ 和 S₂ 的一小分量。由于光纤材料不均匀的 随机性,这些小分量也是随着小偶极子在光纤中的 位置而随机变化。Nakazawa^[11]和 Brinkmeyer^[12]都 得到了这些小分量总体总和的表达式,由此可以推 出瑞利散射反向传输功率,但散射场的相位仍是随 机量无法确定。这里根据散射场的总体效果来确定 反向散射场的相位。由于瑞利散射是能量消耗型 的,其总体效果是使信号场减弱,这就意味着不论是 前向散射场还是后向散射场,与信号场相比总体上 等效有一个相反的相位,即总体上讲S1和S2应是

负实数。这样一来,只要足够大,且满足 sin ♀ ≤ a, 陀螺就发生闭锁。

实际上瑞利散射在光纤中十分微弱[10],但在环 形腔内也会起振^[13,14];另外在有源光纤中,瑞利散 射还得到放大而进一步地增强。根据实验估算,瑞 利散射与信号相比,可达-30 dB的电平。

3 实验结果

在原来工作的基础上^[9],进行了改进,实现了在 CW 方向和 CCW 方向上同时只工作在一个模式的 掺铒光纤环形腔激光陀螺,其原理如图4所示。光 纤环形腔激光陀螺实验系统由几个分离的器件组 成,因此它们之间需要焊接。反射主要由光纤焊接 处的不完善性引起;而散射主要由光纤中微观的折 射率不均匀引起。由于着重考虑陀螺的闭锁现象, 因此有关该陀螺实验模型的细节不在此描述。图 5 给出了上述陀螺的工作曲线,明显看出,当转速 $\Omega <$ 10°/s时,该陀螺出现闭锁。将实验中测得的闭锁 阈值代入到 $\sin \frac{\phi}{2} \leq a + (阈值按 10^{\circ} / s 计算), 再考$ 虑到环形腔的尺寸和工作波长(λ=1.55 μm),可估算 出环内瑞利散射电平约为-27 dB。

Fig. 4 Schematic of the experimental setup of the fiber ring laser gyro

图 5 陀螺的工作曲线 Fig.5 Beat frequency shift versus cavity rotation rate of fiber ring laser gyro

4 结 论

2490

由光纤激光陀螺工作解析表达式,可知后向瑞 利散射是造成该陀螺闭锁的原因。因此对于连续波 工作状态的光纤激光陀螺,和激光陀螺一样,闭锁是 不可避免的。可以采用激光陀螺技术中已证明行之 有效的方法来减小闭锁效应对光纤激光陀螺测量的 影响。

参考文献

1 Zhan Dejun, Qin Shiqiao, Wang Xingshu et al.. Harmonic measurement for laser gyro lock-in [J]. Acta Optica Sinica, 2009, 29(4): 960~964

战德军,秦石乔,王省书等.激光陀螺锁区的谐波测量方法[J]. 光学学报,2009,**29**(4):960~964

- 2 Wang Guochen, Yu Jie. Analysis of the circuit infection to laser gyro[J]. Chinese J. Lasers, 2009, 36(11): 2873~2877 王国臣,俞 洁. 激光陀螺电路系统对其精度影响的实验分析
- [J]. 中国激光, 2009, **36**(11): 2873~2877

3 Wang Zhiguo, Long Xingwu, Wang Fei et al.. Magnetic sensitivity and optimal operating point of four-frequency differential laser gyroscope [J]. Acta Optica Sinica, 2009, 29(11): 3202~3206

光

汪之国,龙兴武,王 飞等.四频差动激光陀螺的磁敏感性与最 佳工作点[J].光学学报,2009,**29**(11):3202~3206

- 4 F. Aronowitz. Look-in and intensity-phase interaction in a ring laser[J]. J. Appl. Phys., 1970, 41(1): 130~136
- 5 S. K. Kim, H. K. Kim, B. Y. Kim *et al.*. Er³⁺-doped fiber ring laser for gyroscope application [J]. Opt. Lett., 1994, 19(22): 1810~1812
- 6 Y. B. Yeo, J. B. Hong, M. S. Kang *et al.*. Loss modulation effect on the second-harmonically mode-locked erbium-doped fiber laser based on sagnac loop reflector with Y-branch LiNbO₃ phase modulator[J]. *IEEE J. Quantum Electron.*, 2003, **39**(6): 766~772
- 7 R. Kiyan, S. K. Kim, B. Y. Kim. Bidirectional single mode Erdoped fiber ring laser[J]. *IEEE Photon. Technol. Lett.*, 1996, 8(12): 1624~1626
- 8 R. Kiyan, B. Y. Kim. An Er-doped bidirectional ring fiber laser with 90 Faraday rotator as phase nonreciprocal element[J]. *IEEE Photon. Technol. Lett.*, 1998, **10**(3): 340~342
- 9 Jingren Qian, Jue Su, Xuxu Wang et al.. Er-doped fiber ring laser gyroscopes operating in continuous waves[J]. Chin. Opt. Lett., 2007, 5(4): 229~231
- 10 H. G. Unger. Planar Optical Waveguides and Fibers [M]. Oxford: Clarendos Press, 1977
- 11 M. Nakazawa. Rayleigh backscattering theory for single-mode optical fibers[J]. J. Opt. Soc. Am., 1983, 73(9): 1175~1180
- 12 E. Brinkmeyer. Analysis of the backscattering method for singlemode optical fibers [J]. J. Opt. Soc. Am., 1980, 70 (8): 1010~1012
- 13 K. Iwatsuki, K. Hotate, M. Higashiguchi. Effect of Rayleigh backscattering in an optical passive ring-resonator gyro [J]. *Appl. Opt.*, 1984, 23(21): 3916~3924
- 14 K. Iwatsuki, K. Hotate, M. Higashiguchi. Backscattering in an optical passive ring-resonator gyro experiment[J]. Appl. Opt., 1986, 25(23): 4448~4451